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Abstract. In this talk we will try to understand the paper titled ‘Almost arithmetic
progressions in the primes and other large sets’ by Jonathan M. Fraser. This concerns the
problem of finding ‘almost’ arithmetic progressions of arbitrary length in ‘large’ subsets
of integers. We shall see several important results in this direction. The celebrated result
due to B. Green and T. Tao states that the primes contain arbitrarily long arithmetic
progressions. J M Fraser in the paper mentioned above proved a weaker version of
this result. In particular, he proved that the primes contain arbitrarily long ‘almost’
arithmetic progressions. In other words, it means that primes get arbitrarily close to
arbitrarily long arithmetic progressions. The result is of course a corollary of the Green-
Tao theorem. However, the importance of the result comes from the fact that its proof
is elementary and it generalises to the setting of other subsets of integers.

1. Arithmetic progressions in sets of positive upper asymptotic density

Arithmetic progression (AP) of length k: x, x + ∆, x + 2∆, . . . , x + (k − 1)∆ for
some x,∆ ∈ N

Van der Waerden (1927): In every colouring of the integers by finitely many colours,
there exists arbitrarily long monochromatic APs.

Erdos and Turán conjecture (1936): Every ‘large set’ of integers must contain ar-
bitrarily long APs. The term ‘large’ in the above requires some discussion. The most
natural qualification for a set to be large is a suitable density property in the integers.

Definition 1.1 (Asymptotic density (or natural density) of sets). The upper asymptotic
density d of a set A ⊆ N is defined by

d(A) := lim sup
n→∞

#(A ∩ {1, 2, 3, . . . , n})
n

= lim sup
n→∞

1

n

n∑
i=1

χA(i),

and the lower asymptotic density d of a set A ⊆ N is defined by

d(A) := lim inf
n→∞

#(A ∩ {1, 2, 3, . . . , n})
n

= lim inf
n→∞

1

n

n∑
i=1

χA(i),

If both d(A) and d(A) are equal, the asymptotic density d(A) is said to exist and is defined
to be the common number.

There is another useful notion of density commonly know as the logarithmic density of
a set. It is given as follows.

Definition 1.2 (Logarithmic density of sets). The maximal upper logarithmic density δ
of a set A ⊆ N is defined by

δ(A) := lim sup
n→∞

sup
m≥0

log(#(A ∩ [m+ 1,m+ n]))

log n
,
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The lower logarithmic density δ(A) may be defined in a similar fashion. If both δ(A)
and δ(A) are equal, the logarithmic density δ(A) is said to exist and is defined to be the
common number.

Remark 1.3. There are example of sequences for which the logarithmic density exists
and the asymptotic density does not exist.

K. F. Roth (1953) proved the Erdos and Turán conjecture for k = 3. More precisely,
he proved that every set A ⊆ N of upper asymptotic density d(A) > 0 contains a 3-term
AP (and hence many 3-term APs).

Remark 1.4. • There are quantitative versions of this question in the following
sense. For evert 0 < ε < 1 and k, there exists an N(ε, k) such that if we take
N > N(ε, k) and A ⊆ {1, 2, 3, . . . , N} with #A ≥ εN , then A contains an AP of
length k.
• Roth’s proof uses the Fourier analytic arguments.

E. Szemerédi (1975) proved the Erdos and Turán conjecture. In particular, he proved
that every set A ⊆ N of upper asymptotic density d(A) > 0 contains arbitrarily long APs.
His proof is based on combinatorial arguments and certain estimates on exponentials.

H. Furstenberg (1977) gave a new proof of Szemerédi’s theorem using ergodic theory.

W. T. Gowers (1998) gave a new proof of Szemerédi’s theorem for k = 4. Later, in
2011 he gave yet another proof of Szemerédi’s theorem.

There are few more different proofs of the Szemerédi’s theorem.

2. Arithmetic progressions in the primes

First, note that the primes have the upper asymptotic density zero.

van der Corput (1939) proved that the primes contains infinitely many 3-term APs.

The existence of longer APs in the primes remained open for a long time. However, there
were many interesting results in the direction. For example,

D.R. Heath-Brown (1981) proved that there are infinitely many 4-term APs consisting
of three primes and a number which is either a prime or a product of two primes.

B. J. Green (2005) gave another proof of Roth’s theorem for the primes. He showed
that the primes contains infinitely many 3-term APs.

APs of the primes using computational tools

• A. Moran, P. Pritchard and A. Thyssen (1995) found AP of primes of length 22.
• Later, M. Frind, P. Underwood, and P. Jobling (2005) found AP of primes of

length 23.
• The largest known arithmetic progression of primes contains 24 primes by J. Wrob-

lewski (2007)

B. J. Green and T. Tao (2008) proved Szemerédi’s theorem for the primes by showing
that the primes contains infinitely many k-term APs for every k ≥ 1..
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The Green-Tao theorem solves the following Erdos and Turán conjecture for the primes.

Erdos and Turán conjecture (1936): If A ⊆ N is such that
∑
a∈A

1
a

= ∞, then A con-

tains arbitrarily long APs.

3. Almost APs of arbitrary length in the primes

Recently, J. M. Fraser and H. Yu proved a weakened version of the Erdos and Turán
conjecture. Their proof is elementary. We shall discuss this in details here.

Definition 3.1. A set A ⊆ N is said to contain almost APs of arbitrarily length if for all
k ∈ N and ε > 0, there exists an AP P of length k with gap size ∆ such that

sup
p∈P

inf
a∈A
|p− a| ≤ ε∆.

Theorem 3.2. [J. M. Fraser (2019)] If A ⊆ N is such that δ(A) = 1, then A contains
arbitrarily long almost APs.

This proves a weakened version of the Erdos and Turán conjecture. For, we have the
following lemma.

Lemma 3.3. If A ⊆ N is such that
∑
a∈A

1
a

=∞, then δ(A) = 1.

In particular, the primes contain arbitrarily long almost APs as we know that
∑

p prime

1
p

=

∞.

Proof of Lemma 3.3: List the elements of A in increasing order as a1 < a2 < · · · <
an < . . . . Suppose on the contrary that δ(A) < 1. Then by the definition of the upper
logarithmic density, there exists s ∈ (0, 1) such that for all m ≥ 0 and n ∈ N we have

#(A ∩ [m+ 1,m+ n]) . ns.

Let us consider AN = [2N , 2N+1) and write
∞∑
j=1

1

aj
=

∞∑
N=1

∑
j:aj∈AN

1

aj

≤
∞∑
N=1

#(AN)2−N

.
∞∑
N=1

2(s−1)N <∞ as s < 1,

which is a contradiction. This completes the proof. �
Proof of Theorem 3.2: The proof is by contradiction. Suppose A does not contain
arbitrarily long almost APs. Then there exists k ≥ 3 and ε > 0 such that for any given
arithmetic progression P of length k and gap size ∆, we have

sup
p∈P

inf
a∈A
|p− a| > ε∆.

Observe that we may assume, possibly by taking a smaller ε, that 1
2ε

is an integer. We
shall perform an inductive argument to get a contradiction.

For, let I be a finite interval with |I| > 0. We decompose I into k
2ε

equal subintervals

of length 2ε|I|
k

. Let us label these intervals (from left to right) as 1, 2, 3, . . . , k
2ε
. Note that
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each label corresponds to a subinterval of length 2ε|I|
k

. We form congruence classes modulo
1
2ε

on this set of labels 1, 2, 3, . . . , k
2ε
. Note that the centres of the intervals with labels in

the same congruence class form an arithmetic progression of length k and gap size |I|
k
. In

view of our assumption, we observe that at least one interval from each congruence class
does not intersect with the set A, otherwise, we would get an almost AP of length k in
A. This would imply that A ∩ I is contained in the union of k−1

2ε
subintervals of length

2ε|I|
k
. We apply this argument inductively on the subintervals which intersect with the set

A. Let J0 = [m+ 1,m+ n] where m ≥ 0 and n ∈ N.
Preform the previous step with I = J0. We get that A ∩ J0 is contained in the union

of k−1
2ε

subintervals of length 2ε|J0|
k

= (n − 1)2ε
k
. We the same procedure to each one the

subintervals which intersect with A. In this step the length of subintervals, say Ji, would
be (n− 1)(2ε

k
)2 and also we notice that we would get that A∩Ji is contained in the union

of (k−1
2ε

) such subintervals. Subsequently, we get that A ∩ J0 is contained in the union of

(k−1
2ε

)2 subintervals of length (n−1)(2ε
k

)2. We continue this procedure and after performing

it N times we would got that A ∩ J0 is contained in the union of (k−1
2ε

)N subintervals of

length (n− 1)(2ε
k

)N .
Fix N to be the smallest positive integer so that

(n− 1)

(
2ε

k

)N
< 1.

This means thatN satisfies the estimateN ≤ log(n−1)
log( k

2ε
)

+1 Since we are working with subsets

of integers. This choice of N ensures that at the Nth step each subinterval contains at
most one point of the set A. Therefore, we have that

#(A ∩ [m+ 1,m+ n]) ≤
(
k − 1

2ε

)N
≤

(
k − 1

2ε

) log(n−1)

log( k2ε )
+1

=

(
k − 1

2ε

)(
k − 1

2ε

) log(n−1)

log( k2ε )

≤
(
k − 1

2ε

)
n

log( k−1
2ε )

log( k2ε ) .

Since
log( k−1

2ε
)

log( k
2ε

)
< 1, the estimate above yields that the upper logarithmic density δ(A) < 1,

which is a contradiction. This completes the proof. �
Next, we give the proof of the fact that sum of reciprocals of primes diverges.

Proof of
∑

p prime

1
p

= ∞: The proof is due to Erdos. Let us enumerate the primes in

increasing order as p1, p2, p3, . . . . Suppose on the contrary that∑
p prime

1

p
<∞.

Choose L ∈ N large enough so that
∞∑

j=L+1

1
pj
< 1

2
. For a positive integer x, write N(x) to

be the number of positive integers n ≤ x which are not divisible by any primes strictly
larger than pL. If n ≤ x is such an integer then we can express it as n = b2c where c is
square free and b is an integer. This can be done in the following way. Note that only
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prime factor of n are from first L primes p1, p2, p3, . . . , pL. The number c is the product
of a primes in a subset of {p1, p2, p3, . . . , pL} with each prime appears at most once.

With this the number of choices of c is the number of subsets of the first L primes,
which in nothing but 2L. Further, b2 ≤ x and hence the number of choices of b is at most√
x. These observations give us that

N(x) ≤ 2L
√
x.

Next, note that the number of positive integers n < x which are divisible by a prime p is
at most x

p
. With our notation the number of positive integers n < x which are divisible

by any prime other than the first L primes is at most

x−N(x) ≤ x

pL+1

+
x

pL+2

+ · · · < x

2
.

This implies that x
2
< N(x) ≤ 2L

√
x. Note that the estimate above cannot hold for all

positive integers x. For example, take x = 24L+2, then we would get that

24L+1 < 2L22L+1 = 23L+1.

This leads to a contradiction to the hypothesis that sum of reciprocal of primes is finite.
�
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[15] E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arith.

27 (1975), 199–245.

Department of Mathematics, Indian Institute Science Education and Research Bhopal,
Bhopal-462066, India

Email address: {saurabhk}@iiserb.ac.in


	1. Arithmetic progressions in sets of positive upper asymptotic density
	2. Arithmetic progressions in the primes
	3. Almost APs of arbitrary length in the primes
	References

